CURL
YLMRX

Created: 2019-07-03 Wed 11:43

ABOUT

Yoann "fuzzy" Lamouroux:

e Reverse—engineer and security expert @dataimpact
e (we're hiring €)
e Former sysadmin
e Trol " Wdocumented opinions:
m xoxopowo@twitter
m legreffier@irc.freenode.net

ABOUT LAST YEAR

ABOUT LAST YEAR

e 5'is short (except when prod is down)

ABOUT LAST YEAR

e 5'is short (except when prod is down)
e Now I have 20 (w00t)

ABOUT LAST YEAR

e 5'is short (except when prod is down)
e Now I have 20 (w00t)
e I hope I deal better with time

ABOUT LAST YEAR

e 5'is short (except when prod is down)

e Now I have 20 (wQ0t)

e I hope I deal better with time

e (so I made a slide about dealing with time)

ABOUT LAST YEAR

5'is short (except when prod is down)
Now I have 20 (wQ0t)

I hope I deal better with time

(so I made a slide about dealing with time)
No more curling jokes (sorry)

TRIVIA

e Project started in 1996

e Still maintained by Daniel Stenberg (@badger)
e libcurl for about every language out there

e The curl binary is in EVERY default install

ALL OF THEM

ALL OF THEM

e GNU/Linux, *BSD

ALL OF THEM

e GNU/Linux, *BSD
e MacOS

ALL OF THEM

e GNU/Linux, *BSD
e MacOS
e Windows 10 (recently)

SOME QUESTIONS

e curlis old

e curl is badly documented (?)

e DevTools (Firefox, Chrome) is good
e httpie IS neater/prettier

e python-requests

SOME ANSWERS

e Old means:
= Good
= Stable/reliable
e DevTools are indeed good
e httpie is a curl wrapper
e python-requests is python (hang—on, brb)

DOCUMENTATION

e You usually need curl in critical situations
e No time to dig through 3k lines manual

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:
e Reverse—proxies

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

e Reverse—proxies

e Cloudy jokes

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

e Reverse—proxies

e Cloudy jokes

e (aka. mai', aka. Kloug{Front,Flare,...})

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

e Reverse—proxies

e Cloudy jokes

e (aka. mai', aka. Kloug{Front,Flare,...})

e ... whatever cool kids use these days

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

e Reverse—proxies

e Cloudy jokes

e (aka. mai', aka. Kloug{Front,Flare,...})

e ... whatever cool kids use these days

e And shiny boxes (aka. docker)

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

e Reverse—proxies

e Cloudy jokes

e (aka. mai', aka. Kloug{Front,Flare,...})

e ... whatever cool kids use these days

e And shiny boxes (aka. docker)

e Tighter firewall policy (aka. no internets)

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

e Reverse—proxies

e Cloudy jokes

e (aka. mai', aka. Kloug{Front,Flare,...})

e ... whatever cool kids use these days

e And shiny boxes (aka. docker)

e Tighter firewall policy (aka. no internets)

e Just because you can run Chrome in docker,

EVERYWHERE

e DevTools won't get you far beyond the browser
e Today's IT imply:

e Reverse—proxies

e Cloudy jokes

e (aka. mai', aka. Kloug{Front,Flare,...})

e ... whatever cool kids use these days

e And shiny boxes (aka. docker)

e Tighter firewall policy (aka. no internets)

e Just because you can run Chrome in docker,

e ... doesn't mean you should

BASICS

>> curl https://www.example.com/

Display body on stdout.

VERBOSE

} curl -v https://httpbin.org > /dev/null
* Rebuilt URL to: https://httpbin.org/

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 O --t--t-- m-t-mtes mmte--- 0* Trying 34.230.
* TCP_NODELAY set
* Connected to httpbin.org (34.230.136.58) port 443 (#0)
* ALPN, offering h2
* ALPN, offering http/1.1
* successfully set certificate verify locations:
* CAfile: /etc/ssl/certs/ca-certificates.crt

CApath: /etc/ssl/certs

[5 bytes data]

(304) (OUT), TLS handshake, Client hello (1):
[512 bytes data]

(304) (IN), TLS handshake, Server hello (2):
[89 bytes data]

TLSv1.2 (IN), TLS handshake, Certificate (11):
[4832 bytes data]

R e R e

PREFIXES:

e *: s information

e > : protocol verbose FROM your computer (*)
e < : protocol verbose TO your computer ()

} : encrypted data FROM your computer

{ : encrypted data TO your computer

[xxx] : size (in bytes) of data transferred.

o
o
(ssl verbose with brackets is shown only when stdout is redirected)

(*) : doesn't mean it's not encrypted

MORE VERBOSE

tcpdump might not be the answer (yet).
--trace and --trace-asciti for byte—per—byte analysis.

Use - or filename as an argument to write to stdout or to a file.

CUSTOM HEADERS

e -H (or --header) : to send custom headers

e Add 'Key: Value' for each headers
e -A foo:is a shortcutto -H 'User-Agent: foo'

e -b foo=bar:is a shortcutto -H 'Cookie: foo=bar'

(Cookies are just headers your browser is used to save)

COOKIES

e Not saved by default
e Use -c to save cookies to a file (- to display on stdout)
e Use -b to read from a file (it won't by default)

TIMER AFTER TIME

Have-you ever seen this ?:

time curl http://example.org

TRY :

curl --trace-time -v http://example.org

(Only works in verbose or trace mode)

TRY :

curl --trace-time -v http://example.org

(Only works in verbose or trace mode)

Unless you do want to check the cpu-time / user-time of an HTTP
client request.

TRY :

curl --trace-time -v http://example.org

(Only works in verbose or trace mode)

Unless you do want to check the cpu-time / user-time of an HTTP
client request.

(you don't)

ANOTHER APPROACH

You can write many variables on output, with the format string
option including:

e Request information:
m http code
m http_version
e Time and speed:
m time_total
m speed_download
e Many more...

FOR EXAMPLE:

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

e Introducing -oOUTFILE, much prettier than ">/dev/null”
e Also introducing the -s (--silent) option to inhibit the ugly
progress metric

FOR EXAMPLE:

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

e Introducing -oOUTFILE, much prettier than ">/dev/null”
e Also introducing the -s (--silent) option to inhibit the ugly

progress metric
e We can also mention --stderr to control the error output

FOR EXAMPLE:

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

e Introducing -oOUTFILE, much prettier than ">/dev/null”
e Also introducing the -s (--silent) option to inhibit the ugly

progress metric
e We can also mention --stderr to control the error output

e Use with - to direct it to stdout

FOR EXAMPLE:

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

e Introducing -oOUTFILE, much prettier than ">/dev/null”
e Also introducing the -s (--silent) option to inhibit the ugly

progress metric
e We can also mention --stderr to control the error output

e Use with - to direct it to stdout
e Or whatever filename

FOR EXAMPLE:

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

e Introducing -oOUTFILE, much prettier than ">/dev/null”
e Also introducing the -s (--silent) option to inhibit the ugly

progress metric
e We can also mention --stderr to control the error output

e Use with - to direct it to stdout

e Or whatever filename
e >15 years using shells, still can't handle std flows ?

FOR EXAMPLE:

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

e Introducing -oOUTFILE, much prettier than ">/dev/null”

e Also introducing the -s (--silent) option to inhibit the ugly
progress metric
e We can also mention --stderr to control the error output
e Use with - to direct it to stdout
e Or whatever filename
e >15 years using shells, still can't handle std flows ?
e curl got your back.

DID YOU EVER ?

DID YOU EVER ?

DID YOU EVER ?

Need to edit /etc/hosts ?

DID YOU EVER ?

Need to edit /etc/hosts ?

curl -v --resolve www.example.com:443:1.2.3.4 https://www.example.com/

DID YOU EVER ?

Need to edit /etc/hosts ?

vV --resolve www.example.com:443:1.2.3.4 https://www.example.com/

No need to play around with "Host" header

MEMORY ALLOCATION
PROBLEMS

Random grumpy guy s

Does this guy think we're gonna remember
all of this ?

& Reply T3 Retweet W Favorite ***® More

MEMORY ALLOCATION
PROBLEMS

Random grumpy guy s

Does this guy think we're gonna remember
all of this ?

& Reply T3 Retweet W Favorite **® |

No. Don't.

MEMORY ALLOCATION
PROBLEMS

Random grumpy guy 1~

Does this guy think we're gonna remember
all of this ?

& Reply T3 Retweet W Favorite *9®)

No. Don't.

All the options I mentioned can be added to SHOME/.curlrc

MEMORY ALLOCATION
PROBLEMS

Random grumpy guy -

Does this guy think we're gonna remember
all of this ?

& Reply T3 Retweet W Favorite *ee)

No. Don't.

All the options I mentioned can be added to SHOME/.curlrc

Or write several of these, and recall them with -K filename, or
--config

CURL PLAYS NICE WITH
OTHERS

Or you can avoid the options madness and ordering, by just right-—
clicking in Firefox (and Chrome) DevTools.

CURL PLAYS NICE WITH
OTHERS

Or you can avoid the options madness and ordering, by just right-—
clicking in Firefox (and Chrome) DevTools.

And select "Copy as cURL"

CURL PLAYS NICE WITH
OTHERS

Or you can avoid the options madness and ordering, by just right-—
clicking in Firefox (and Chrome) DevTools.

And select "Copy as cURL"

It works in BurpSuite too.

CURL PUTS THE CIN CURL.

> curl https://example.com \
--header "Hello: World" -w '# %{http_code} -- %{time total}'\
--libcurl test.c -so/dev/null

200 -- 0,339792%

> cat test.c

TEST.C

[****x*k%xx* Sample code generated by the curl command line tool ******¥¥**

* ALl curl_easy setopt() options are documented at:
* https://curl.haxx.se/libcurl/c/curl_easy setopt.html

**/

#include <curl/curl.h>

int main(int argc, char *argv[])

{

CURLcode ret;
CURL *hnd;
struct curl_slist *slisti;

slistl NULL;
slistl = curl_slist_append(slistl, "Hello: World");

hnd = curl_easy_init();

curl_easy setopt(hnd, CURLOPT_BUFFERSIZE, 102400L);
curl_easy setopt(hnd, CURLOPT_URL, "https://example.com");
curl_easy setopt(hnd, CURLOPT_NOPROGRESS, 1L);

YOUR OWN STRESS-TEST

e Because after all, they're just glorified (yet customisable)
loops with precise metrics
e |et's roll our own apache-bench

#include <curl/curl.h>

#include <omp.h>

#define MAX_THREAD 64

#define LASERS 1000

#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, 1 = 0;
FILE *devnull;
devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)
{
#pragma omp for
for(i = 0; 1 < LASERS; ++1) {
tid = omp_get_thread_num();

CURLcode ret;
CURL *hnd;
double total;

e Just removing some comments

#include <curl/curl.h>

#include <omp.h>

#define MAX_THREAD 64

#define LASERS 1000

#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, 1 = 0;
FILE *devnull;
devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)
{
#pragma omp for
for(i = 0; 1 < LASERS; ++1) {
tid = omp_get_thread_num();

CURLcode ret;
CURL *hnd;
double total;

e Just removing some comments
e And wrap some OpenMP magic around

#include <curl/curl.h>

#include <omp.h>

#define MAX_THREAD 64

#define LASERS 1000

#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, 1 = 0;
FILE *devnull;
devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

{
#pragma omp for
for(i = 0; 1 < LASERS; ++1i) {
tid = omp_get_thread _num();

CURLcode ret;
CURL *hnd;
double total;

e Just removing some comments
e And wrap some OpenMP magic around
e Compile with: gcc mt_curl.c -fopenmp -lcurl

#include <curl/curl.h>

#include <omp.h>

#define MAX_THREAD 64

#define LASERS 1000

#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, 1 = 0;
FILE *devnull;
devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)
{
#pragma omp for
for(i = 0; 1 < LASERS; ++1) {
tid = omp_get_thread_num();

CURLcode ret;
CURL *hnd;
double total;

e Just removing some comments
e And wrap some OpenMP magic around
e Compile with: gcc mt_curl.c -fopenmp -lcurl

e Make sure the entire file is <42 LoC

#include <curl/curl.h>

#include <omp.h>

#define MAX_THREAD 64

#define LASERS 1000

#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, 1 = 0;
FILE *devnull;
devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)
{
#pragma omp for
for(i = 0; 1 < LASERS; ++1) {
tid = omp_get_thread_num();

CURLcode ret;
CURL *hnd;
double total;

DEMO ?

THANK YOU

e Everyone @ PTS for all the event
e Dan Stanberg for all of the curling
e Have a safe trip back home

QUESTIONS ?

<

