
© Fraunhofer

Hunting Binary Code Vulnerabilities Across CPU Architectures

Pass The SALT 2019

CWE_CHECKER

© Fraunhofer

$whoarewe

 Thomas Barabosch

 @tbarabosch

 PhD in computer science

 Binary Code Analyst (*ware)

 Hobbyist Bug Hunter (*BSD, Router, Hypervisor, …)

 Nils-Edvin Enkelmann

 PhD in mathematics

 Security researcher with focus on binary code analysis

© Fraunhofer

OUTLINE

1. Motivation

2. cwe_checker

3. Case Studies

4. Integration with other tools

5. Future Work

6. Conclus ion

© Fraunhofer

MOTIVATION

 Goal: Security analysis of closed source firmware

 Bug hunting through reverse engineering is tedious and time-consuming

Automation!

© Fraunhofer

MOTIVATION

 Many different CPU architectures in the IoT-world

 x86/x64, PowerPC, MIPS, ARM, ...

 Each CPU-architecture has its own instruction set

 e.g. x86/x64 alone has hundreds of assembly instructions

 Assembly instructions can have complex side effects

 What does ADD actually do?

 Working directly on the disassembly does not scale

 Solution: build analyses up on intermediate representation language

© Fraunhofer

ARM x86

Bil IRBil IR

© Fraunhofer

Binary Analysis Platform (BAP)

 Reverse engineering and program analysis platform

 Focus: binary code

 Disassembles and lifts to Intermediate Representation (BIL)

 Lifters available for x86, x86-64, ARM, PowerPC, MIPS

 BIL comprises less than 40 instructions

 Written in Ocaml

 Bindings for C, Python, Rust

 https://github.com/BinaryAnalysisPlatform/bap

© Fraunhofer

CWE_CHECKER

© Fraunhofer

cwe_checker – Overview

 Detection of CWEs (Common Weakness Enumeration) through heuristics

 Based on top of BAP

 Inspired by ClangAnalyzer et al.

 Architecture-independent through use of BAP’s IR

 Modular structure

 13 CWE-modules using static analysis

 4 CWE-modules using symbolic execution

 Easy to add YOUR custom check

 Easy deployment through Docker or Opam

© Fraunhofer

cwe_checker – Architecture

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

Reports

Lifting

© Fraunhofer

cwe_checker – A Running Example

© Fraunhofer

cwe_checker – Disassembly of Targets

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker – Lifting to BIL

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker – A (partial) report

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker – A Running Example

© Fraunhofer

(Some) Pure Static Analysis Modules

 CWE-190: Integer Overflow

 CWE-215: Information Exposure Through Debug Information

 CWE-332: Insufficient Entropy in PRNG

 CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

 CWE-476: NULL Pointer Dereference

 CWE-676: Use of Potentially Dangerous Function

© Fraunhofer

(Even More) Pure Static Analysis Modules

 CWE-243: Creation of chroot Jail Without Changing Working Directory

 CWE-248: Uncaught Exception

 CWE-426: Untrusted Search Path

 CWE-457: Use of Uninitialized Variable

 CWE-467: Use of sizeof() on a Pointer Type

 CWE-560: Use of umask() with chmod-style Argument

 CWE-782: Exposed IOCTL with Insufficient Access Control

© Fraunhofer

Symbolic Execution with BAP‘s Primus

 Static program analysis technique to explore program execution paths

 Symbolic values instead of concrete values

 Outputs symbolic expressions

 General issue: symbolic execution is time consuming (path explosion)

 Primus is BAP‘s framework for symbolic execution

 Primus is extendable via Primus LISP

 Library function stubs (e.g. malloc)

 Implementation of security checks

© Fraunhofer

Symbolic Execution-based Modules

 CWE-215: Out-of-bounds Read

 CWE-415: Double Free

 CWE-416: Use After Free

 CWE-787: Out-of-bounds Write

© Fraunhofer

CASE STUDIES

© Fraunhofer

CWE-190: Integer Overflow or Wraparound

 Multiplications + Memory Operations especially vulnerable

 Check for multiplication instructions before calls to malloc

 Assumption: If in basic block right before the call ⇒ no overflow
check!

 Checked functions: malloc, xmalloc, realloc

 Users can add functions

 Future improvement: use data flow analysis

 to see if attacker can control input / no sanitization at all

© Fraunhofer

CWE-190: Integer Overflow or Wraparound

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

 Many functions may return NULL on failure (e.g. malloc, open, …)

 Therefore: return value must be checked!

 Via Data Flow Analysis

 Taint return register

 Taint registers whose value is computed using a tainted register

 Search for execution paths where a tainted register is used for
memory access before a tainted register is checked

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

© Fraunhofer

INTEGRATION WITH OTHER TOOLS

© Fraunhofer

cwe_checker in FACT 1/2

© Fraunhofer

cwe_checker in FACT 2/2

© Fraunhofer

Visualize cwe_checker Results with IDA Pro

© Fraunhofer

LET‘S WRAP IT UP

© Fraunhofer

Current Limitations

 It‘s static analysis: false positives / false negatives

 Some checks are based on strong assumptions to simplify the analysis

 Symbolic execution is slow (especially on bigger binaries)

© Fraunhofer

Future Work

 Add more checks and improve correctness of older checks

 Improve pointer analysis

 Memory management checks via static analysis

 Maybe foundation of fully fledged type analysis

 Tool integration

 Improve IDA Pro support (start from within IDA)

 Add support for Ghidra (visualize results, start from within Ghidra)

© Fraunhofer

Conclusion

 cwe_checker is a static analysis tool to heuristically detect bug classes

 Thanks to its foundation BAP, it analyzes binaries of many architectures

 Including x86/x64, ARM, PPC, MIPS, …

 cwe_checker comprises a wide range of checks (currently 15+)

 from simple „pattern matching“ to data flow analysis-based checks

 Tool integration is a major concern: FACT + IDA Pro

© Fraunhofer

GET IT NOW!

 https://github.com/fkie-cad/cwe_checker

 Release: 0.2

 Ask for free stickers!

https://github.com/fkie-cad/cwe_checker

